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In this paper, an efficient conformal locally one-dimensional finite-difference time-domain (LOD-CFDTD) method is proposed and 

its theoretical numerical dispersion analysis is presented. Instead of staircasing approximation, the conformal scheme is only employed 

to model the curved boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids accounts for 

a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. With the total-

field/scattered-field (TF/SF) boundary and perfectly matched layer (PML), the radar cross section (RCS) of a 2-D structure is 

calculated to verify the accuracy and efficiency of the LOD-CFDTD method.  

 
Index Terms—Conformal, locally one-dimensional (LOD) finite-difference time-domain (FDTD), numerical dispersion analysis, 

scattering.  

 

I. INTRODUCTION 

HE FINITE-DIFFERENCE time-domain (FDTD) method based 

on the locally one-dimensional (LOD) scheme eliminates 

the temporal stability constraint of conventional FDTD [1]. 

However, although the time step in the LOD-FDTD method is 

not limited by the Courant-Friedrich-Levy (CFL) condition, a 

large time step will lead to large numerical dispersion errors 

[2]. Some improved schemes have been introduced to reduce 

the numerical dispersion error and enhance the efficiency of 

the conventional LOD-FDTD method [3-5]. Recently, a 

nonorthogonal LOD-FDTD (LOD-NFDTD) method was 

proposed for scattering problems in the curvilinear coordinate 

system and high performance was achieved [6], but it can be 

seen that its implementation is relatively complex. An easily 

implemented conformal scheme introduced to LOD-FDTD 

(LOD-CFDTD) can be used to reduce the staircasing error, in 

which the conformal grids are only applied to the curved 

metallic boundary, whereas standard Yee grids are used in the 

remaining computational regions. In this paper, the efficient 

LOD-CFDTD method is presented and its numerical 

dispersion is analytically analyzed.  

II. LOD-CFDTD METHOD AND ITS NUMERICAL DISPERSION  

On the irregular grids intersected by a perfect electric 

conductor (PEC), the E-field is updated exactly in the same 

way as in the conventional LOD-FDTD method, while the H-

field is updated in a different way based upon Faraday’s law 

along the circumference of the irregular grids. Following the 

derivation of LOD-FDTD’s formulation [1], the two sub-steps 

of LOD-CFDTD that convert the explicit scheme into an 

implicit one can be obtained.  

Starting from the time-domain Maxwell’s equations for a 

two-dimensional (2-D) TEz wave and Fourier analysis for a 

monochromatic wave, the numerical dispersion relation of the 

LOD-CFDTD method can be derived as follows [2]:  
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where 0j 1  , 'x  and 'y  are the lengths of an irregular 

grid outside the PEC along x- and y- directions, respectively, 

and S is the area of the irregular grid outside the PEC.  

It is worth mentioning that (1) will be converted into the 

numerical dispersion of LOD-FDTD in regular grid when 

'x x    and 'y y   . Obviously, as t , x  and y  tend 

to zero, (1) will be converted into the ideal dispersion relation  
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where k = ω/c is the theoretical wave-number and c is the 

speed of light in free space.  

To study the effect on numerical dispersion from different 

irregular grids, the ratio Ri is defined as  
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It is the fact that the conformal scheme with different Ri has 

much effect on numerical dispersion for a single irregular grid. 

An example of a 2-D circular waveguide with a radius of 

4.5mm is used to validate the numerical dispersion in the 

whole computational region. The weighted R in the whole 

computational region is calculated by  
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where N is the total number of grids. The normalized phase 

velocity with propagation direction of LOD-CFDTD is shown 

in Fig. 1. It can be seen that a small percentage of irregular 

T 



grids contributes little effect on numerical dispersion in the 

whole computational region.  
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Fig. 1. Normalized phase velocity vs. the wave angle from LOD-FDTD and 
LOD-CFDTD with different CFLNs (CFL numbers) and PPW (points per 

wavelength) = 40.  

 

To validate the accuracy of proposed method for different 

PPWs and CFLNs, the cutoff frequency of TE11 mode is 

calculated in the circular waveguide. Fig. 2 shows the relative 

errors obtained by LOD-FDTD using staircasing 

approximation and LOD-CFDTD with PPW = 20 (where R = 

0.9667) and 40 (where R = 0.9982) at different CFLNs, 

respectively. It can be seen that the results obtained from the 

proposed LOD-CFDTD method are more accurate than the 

staircase approximation scheme with the same PPW.  
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Fig. 2. Temporal discretization convergence curves of the LOD-FDTD and 

LOD-CFDTD for the 2-D PEC circular waveguide.  

III. NUMERICAL RESULT  

In order to validate the accuracy and efficiency of the 

proposed LOD-CFDTD method, the scattering by two PEC 

elliptic cylinders which are infinitely long in the z-direction is 

computed in this section. Fig. 3 displays the configuration of 

the two structures, where a = λ/10, b = 2λ and s = 0.4λ.  

Here, results obtained from both the CFDTD and 

alternating-direction-implicit (ADI) CFDTD methods are also 

shown for comparison. The bistatic RCS for the two 2-D PEC 

elliptic cylinders is shown in Fig. 3. Obviously, the results 

obtained with LOD-CFDTD are in good agreement with those 

obtained from CFDTD and ADI-CFDTD.  

A comparison between the CFDTD, ADI-CFDTD and 

LOD-CFDTD methods in terms of execution time and 

memory usage for calculating the RCS of this example is 

shown in Table I. With the same grids density, the CPU time 

for LOD-CFDTD is less than CFDTD and ADI-FDTD while 

maintaining the acceptable accuracy. The calculation has been 

performed on an AMD Phenom II×4 3.0 GHz machine with 4 

GB RAM.  
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Fig. 3. Bistatic RCS of two PEC elliptic cylinders from three methods.  

 
TABLE I 

COMPARISON OF COMPUTER RESOURCES FOR THE TWO PEC ELLIPTICAL 

CYLINDERS USING CFDTD, ADI-CFDTD AND LOD-CFDTD  

Methods Δt (ps) 
Marching 

steps 

CPU time 

(s) 

Memory 

(MB) 

CFDTD 5.00 12000 1726.79 6.78 
ADI-CFDTD 15.00 4000 1459.99 12.11 

LOD-CFDTD 15.00 4000 1205.38 11.33 

IV. CONCLUSION 

In this paper, an efficient LOD-CFDTD method is presented 

and its numerical dispersion is analytically analyzed. It is 

proved that the conformal grids which account for a small 

percentage of the whole grids have little effect on its 

numerical dispersion, and the numerical result validates the 

accuracy and effectiveness of the proposed method.  
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